
www.manaraa.com

Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-21-2019

Control Strategies for Multi-Evaporator Vapor
Compression Cycles
Sunderlin D. Jackson

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Aerospace Engineering Commons, and the Physical Chemistry Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Jackson, Sunderlin D., "Control Strategies for Multi-Evaporator Vapor Compression Cycles" (2019). Theses and Dissertations. 2222.
https://scholar.afit.edu/etd/2222

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholar.afit.edu%2Fetd%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=scholar.afit.edu%2Fetd%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2222?utm_source=scholar.afit.edu%2Fetd%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


www.manaraa.com

CONTROL STRATEGIES FOR
MULTI-EVAPORATOR VAPOR

COMPRESSION CYCLES

THESIS

Sunderlin D. Jackson, Second Lieutenant, USAF

AFIT-ENY-MS-19-M-221

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION IS UNLIMITED



www.manaraa.com

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the United States Department of
Defense or the United States Government. This is an academic work and should not
be used to imply or infer actual mission capability or limitations.



www.manaraa.com

AFIT-ENY-MS-19-M-221

CONTROL STRATEGIES FOR MULTI-EVAPORATOR VAPOR

COMPRESSION CYCLES

THESIS

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Astronautical Engineering

Sunderlin D. Jackson, BS

Second Lieutenant, USAF

March 2019

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION IS UNLIMITED



www.manaraa.com

AFIT-ENY-MS-19-M-221

CONTROL STRATEGIES FOR MULTI-EVAPORATOR VAPOR

COMPRESSION CYCLES

Sunderlin D. Jackson, BS
Second Lieutenant, USAF

Approved:

Anthony Palazotto, PhD (Chairman) Date

Meir Pachter, PhD (Member) Date

Nicholas Niedbalski, PhD (Member) Date



www.manaraa.com

AFIT-ENY-MS-19-M-221

Abstract

Next-generation military aircraft must be able to handle highly transient thermal

loads that exceed the ability of current aircraft thermal subsystems. Vapor compres-

sion cycle systems are a particular refrigeration technology that is an attractive solu-

tion for dealing with this challenge, due primarily to their high efficiency. However,

there are several barriers to realizing the benefits of vapor cycles systems for control-

ling thermal loads in military aircraft. This thesis focuses on addressing the challenge

of controlling vapor cycles in the presence of highly transient evaporator heat loads.

Specifically, a linear quadratic regulator (LQR) is designed for a simple vapor cycle

system, and closed-loop performance is compared with a set of proportional-integral

(PI) controllers. Simulation results show significant advantages of using the LQR

method, and the same approach is repeated for a larger dual-evaporator vapor cycle

system. The LQR method retains some of its benefits, but several issues associated

with relying on a single linear model for the full nonlinear system are identified, and

recommendations for future work are made at the end.
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CONTROL STRATEGIES FOR MULTI-EVAPORATOR VAPOR

COMPRESSION CYCLES

I. Introduction

1.1 Background

The various mechanical and electrical systems present in modern aircraft have a

tendency to generate heat. Left alone, the buildup of this heat would degrade

performance, overheat components, and eventually lead to system failure. It is for

this reason that all aircraft have some form of thermal subsystem, to regulate

temperatures throughout the vehicle. Currently, most aircraft rely upon passive air

cycle cooling to maintain thermal requirements. Unfortunately for the aircraft

designer, it is anticipated that the design requirements for next-generation military

aircraft will require the use of more advanced thermal control systems. Specifically,

next-generation aircraft will need to handle highly transient thermal loads while

meeting tighter mass, size and efficiency constraints [2]. In order to realize these

goals, research is being conducted to evaluate the effectiveness of going to active

thermal control, with different cooling architectures.

The Vapor Compression System (VCS) is an attractive solution to this

challenge because they take advantage of evaporative cooling, and they incur less

weight, cost and volume, compared to appropriately scaled versions of traditional

thermal management systems [3]. The standard vapor cycle consists of four

components: the valve, evaporator, compressor and condenser. The cycle is

1
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visualized in terms of its components in Fig. 1, but it can also be visualized in

terms of its pressure-enthalpy diagram, shown in Fig. 2.

Figure 1. Simple Vapor Cycle Architecture

A refrigerant, such as R134a, flows throughout the cycle, carrying heat from a

load to a sink. The fluid begins the cycle as a low pressure gas at the exit of the

evaporator (1). It is then compressed to a high pressure (1-2) and passed through

the condenser where it is cooled to a liquid (2-3). From here, it flows through the

valve (3-4), expanding the fluid and bringing it to a two-phase state, at low

pressure. Heat is then reintroduced to the fluid while passing through the

evaporator (4-1), and the cycle repeats. Idealizing assumptions include isobaric

phase change across the heat exchangers, isenthalpic expansion in the valve, and

isentropic compression in the compressor.

VCS has a long and successful history of application in the Heating, Ventilation

and Air Conditioning (HVAC) and automotive industries, among others. Phase

change between liquid and gas requires a large amount of heat for a relatively small

amount of refrigerant, thereby allowing the vapor cycle to achieve higher efficiencies

2
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Figure 2. Pressure Enthalpy Diagram

than alternatives like the air cycle. Additionally, there is great potential in

controlling the system to handle highly variable loads on the evaporator, so that

cooling capacity is delivered as demand arises. However, this technology has some

hurdles to overcome before it can be used effectively to address the aforementioned

requirements for next-generation military aircraft.

Traditional applications for VCS have been characterized by large thermal

inertias, relatively stagnant ambient conditions, and steady heat loads. Thus, there

are well-defined operation and control methods for VCS operating under these

conditions. However, military aircraft do not satisfy any of those conditions. High

power electronics can double the evaporator heat load in a matter of seconds.

Ambient temperatures can fall 20◦ C as the aircraft rapidly climbs in altitude.

These issues might be overcome by over-sizing the VCS components, but then size

constraints are violated. Additionally, there may be constraints imposed by stealth

on the allowable heat that can be sunk to ambient. All of these characteristics make

it harder to control the vapor cycle and maintain required operating temperatures

3
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at the evaporator load. There are even cases where these issues can cause

component failure, with the most well-known case being superheat loss [4].

Designing VCS capable of dealing with these instances of high transience, while still

meeting design constraints is an ongoing area of research. Table 1, adapted from

Doty et al. [1], provides a concise summary of the fundamental research challenges

in aircraft thermal controls.

Control Limitation Aircraft thermal system example

System and signal uncertainty
Aging aircraft systems changing

dynamic behavior over time

Time delays
Transport delays of energy or mass

for a liquid loop to affect a cold plate

Sensing/actuation limits
Maximum pump speed or

valve opening in a liquid loop

Collocation of sensing and actuation
Temperature sensors in an electronics
bay with cooling governed by an ACM

system actuated remotely from the sensor

Underactuation
Spatially distributed fuel temperature

profiles with point sensing and actuation

Nonlinearity
Variation in ACM effectiveness as a

function of air-vehicle altitude

Table 1. Control limitations and their prevalence in aircraft thermal systems[1]

1.2 Problem Statement

This thesis will focus on the problem of controlling the actuators in a vapor

cycle. By varying the valve opening and the compressor speed, the controller seeks

to drive the system to a particular state. In most applications, this is handled by

separate Single-Input Single-Output (SISO) control loops, each driven by separate

PI controllers. This simple approach succeeds when the plant has a large thermal

mass and the loads are slowly varying, but performance suffers greatly in the

presence of highly transient loads, even becoming unstable in some cases [5]. The

feedback gains in each PI loop are typically tuned heuristically, based on prior

4
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experience, but tuning around performance objectives is often a process of

trial-and-error, with no metric on whether or not success is even possible.

Additionally, this process is exacerbated as additional evaporators are added to the

system to cool distributed loads with different operating temperatures.

1.3 Research Objectives

This thesis aims to evaluate the benefits of applying model-based control to a

VCS, as compared to a baseline PI controller. Academic research into VCS control

has shown the benefits of applying more advanced control strategies, particularly in

the field of automotive and building HVAC systems ([6],[7],[8]). Extending these

techniques to applications with highly transient loads has also shown significant

improvements in controller performance [9]. However, the prospect of iterating

rapidly between controller and plant design is challenging, due to the difficulties of

accurately modeling the complex, nonlinear dynamics present in vapor cycles. The

use of the AFRL Transient Thermal Modeling and Optimization (ATTMO) toolbox

can alleviate this modeling challenge, and so developing a systematic process for

using the toolbox to design controllers is of great interest.

1.4 Methodology

Ngo et al. [10] established such a pathway for designing model-based controllers

in ATTMO. This thesis utilizes the same pathway in order to design a Linear

Quadratic Regulator (LQR) controller with the goal of rejecting a pulsed heat

disturbance on a VCS plant, modeled in ATTMO. LQR controllers are Multi-Input

Multi-Output (MIMO) controllers and therefore are not limited to controlling

”pairs” of signals in the way that SISO loops are. Cross-couplings in the dynamics

are entirely ignored when using SISO controllers, and manifest as ”unmodeled”

5
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dynamics in the closed-loop system, causing a deterioration in performance. MIMO

controllers directly consider cross-couplings, and utilize them in the control design.

Our control design process began by defining the actuators, available feedback

signals, and desired performance objectives. The process started with a Simple

VCS, consisting of only the four necessary components, in order to gain

familiarization with the method. An ATTMO model of the system was linearized in

MATLAB, resulting in a linear state space model, with as many states as the full

nonlinear model. This system was too large to be tractable for control system

design, and was reduced in size via model-reduction techniques. With the

reduced-order linear model, an LQR controller with a state estimator was designed

and tuned on a test case where a large pulse disturbance in the heat load was sent

to the system. To reach the desired performance objectives, the LQR controller was

modified to include a model of exogenous disturbances in the form of the heat load,

so that large increases in the heat can be compensated for without requiring explicit

measurement of the heat load.

Once that process was complete and the improved performance was verified, the

design was repeated with a Dual-Evaporator VCS, based on a model of the Vapor

Cycle System Research Facility (VCSRF). The VCSRF was built by the Air Force

Research Laboratory (AFRL) Aerospace Systems Directorate, at Wright Patterson

Air Force Base, Ohio, and was designed as a test-bed for evaluating different control

and operation methods for VCS. This test-bed has been modified and used for

several studies in the past, many of which were aimed at evaluating new methods

for controlling vapor cycles in operating conditions representative of those seen by

military aircraft. Indeed, the baseline PI controllers against which we compare our

results are taken from this past work [2]. By introducing the added complexity of

6
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some of the VCSRF components, the intent was to show how the controller’s

performance scales with the complexity of the plant.

1.5 Assumptions and Limitations

Throughout this work, the controllers are designed and evaluated purely in

simulation. The expectation that these controllers will work on the physical system

is closely tied to an assumption that the models have been sufficiently validated on

physical systems. This work does not contain any model validation, but there is

already a significant amount of ATTMO model validation existing in the literature.

For this reason, it is assumed that the ATTMO models are sufficiently accurate,

such that this approach would work on a real VCS. However, in order to be sure of

this assumption, further work is required to verify controller performance on the

actual hardware.

Additionally, certain assumptions are made about the nature of the feedback

signals provided by the sensors for state estimation. The feedback signals are all

temperatures, but in physical systems there is often a discrepancy between

measured temperatures and desired temperatures, either in terms of a time delay or

an offset. No considerations for sensor inaccuracy, or actual sensor noise, are taken

in this work, but these issues can be dealt with by appropriately modifying the

model to include these phenomena.

Lastly, since we are designing linear controllers, we assume that the operating

conditions remain sufficiently close to the setpoint such that the linearized dynamics

are an appropriate description of the actual dynamics. There are regions of the

state space that are more nonlinear than others (e.g. low superheat), and so

judicious choosing of the setpoint is an important part of the design process. In

7
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practice, this can be addressed by using multiple linear controllers that are

gain-scheduled to handle the changes in dynamics.

1.6 Thesis Overview

The remainder of this thesis is organized as follows. Chapter II provides a

review of existing literature on VCS control, in order to provide the appropriate

context for our work. This begins with a review of the research efforts undertaken

to develop accurate models of vapor cycles. The study of leveraging different control

methods in VCS is then shared, and our particular contribution to the literature is

given.

Chapter III discusses the methodology used in our models and in the design of

our controllers. In particular, an outline of the linear optimal control theory

associated with LQR controllers is given, along with a discussion of how integral

control and disturbance estimation is introduced to the design process. The process

for extracting a tractable linear model from the full nonlinear system is also outlined

in this section, along with a table containing the controller specifications. Towards

the end of the chapter, a brief outline of the PI control architecture is shared.

Chapter IV contains the closed-loop simulation results for the Simple VCS with

the LQR and PI controllers. Performance comparisons are made, with emphasis on

the benefits of using the LQR method. The same process is then repeated with the

Dual-Evaporator VCS, and the limitations of the LQR method are highlighted in

the simulation results.

Finally, Chapter V summarizes the research effort, and concludes with closing

points and recommendations for future work.

8
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II. Literature Review

2.1 Vapor Cycle Modeling

The vast majority of classical control techniques require a model of the plant

dynamics in order to design an effective controller. Therefore, a natural starting

point for choosing feedback gains to control the compressor and valves in a vapor

cycle system would be in modeling the various components. As discussed by Kania

et al. in their overview of the ATTMO toolbox [11], the challenge in vapor cycle

modeling lies in the two-phase heat exchanger models. There are a number of

instabilities that can develop in two-phase flows, both over fast and slow timescales

as shown by Kakac in [12], and these issues are compounded by interactions

between different subsystems. For example, it is critical in many vapor cycles that

superheat be maintained, otherwise liquid can leave the evaporator, causing a

mechanical failure in the compressor. Identifying what characteristics to include in

the mathematical model of a VCS has always been a challenge, and often control

engineers have resorted to model-free control techniques, such as PI, which can be

tuned without a model of the dynamics. These approaches work under conservative

operating conditions, but there are many performance sacrifices that are made when

designing controllers like this.

The first tractable model of heat exchangers was the moving boundary model,

developed by Wedekind et. al. [13]. This approach simplifies the two-phase flow by

dividing it into discrete zones, with zones for liquid, gas and two-phase. Further

research went into refining this modeling approach to improve transient behavior,

and indeed continues today [14]. In many academic works today the moving

boundary model forms the basis for the plant model, but it is not the only

approach. Jain et al. [15] used linear models, analogous to electrical circuits, to
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allow for scalability in the size of the system, sacrificing accuracy in exchange for

system size. Linear models also see a large amount of use when designing controllers

via gain-scheduling, as in Rasmussen et al. [16]. Here, the parameters in the linear

models are often identified via system identification. This thesis instead uses a

finite-volume approach to modeling the heat exchangers which is more

computationally expensive, but has improved accuracy over other approaches [17].

2.2 Vapor Cycle Control

Towards the end of the 20th century, the academic controls community began

applying different techniques to the problem of vapor cycle control. The earliest

such work was He’s dissertation at the Massachusetts Institute of Technology [6].

This work developed an LQR controller based on a linearized model of the moving

boundary model. The results showed great performance over traditional control

methods in experimental lab work. Later, Dr. He and his advisor Dr. Asada

investigated the use of other control methods, including the use of nonlinear control

methods like feedback linearization [18]. All of this work was targeted for application

in the HVAC industry, although the principals are likely transferable to other

applications of VCS. He and Asada published many papers illustrating the benefits

of improving VCS control systems, leading other groups to expand the research.

Alleyne and his team at the University of Illinois Urbana-Champaign has a long

record of academic contribution to both the modeling and the control side of this

problem. The research group has published a number of influential papers on

modeling vapor cycles for the control purposes. Often, the team uses linearized

dynamics to design controllers, and so they have studied the benefits of choosing

optimal setpoints about which to linearize [19]. Additionally, they have studied edge

cases encountered during actual operation of vapor cycles, such as start-up and
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shutdown transience [20]. On the theoretical side, the team has improved upon

existing moving-boundary models to overcome some of the numerical issues

associated with them [14], and they have found ways to improve sensor-actuator

feedback pairings via the use of relative gain arrays [21].

More recently, Alleyne’s team and others have investigated the benefits of

applying more modern control techniques to this problem. Several papers applying

model predictive control have been published by the team which frame the problem

as a constrained optimization problem, where some cost function is formulated to

capture the control objectives, and is minimized over the choice of control actions.

This approach is often called Model Predictive Control (MPC), and seems to have

the most promise when a linear model is used and a priori knowledge about future

disturbances is readily available [22]. Of course, the real system is nonlinear, and

nonlinear optimization tools are generally less robust, although some research efforts

have shown promise in implementing nonlinear MPC in VCS control, with the work

of Gräber et al. being a commonly cited example [23].

Wen and his team at the Rensselaer Polytechnic Institute also have a significant

record of contributions to the field of vapor cycle control. Like many other teams,

they have studied the benefits of applying modern techniques like H2 [24], and H∞

[25], usually designed with numerical linearizations of moving-boundary models.

However, the team has applied these techniques to modified vapor cycles, with

added components like accumulators and recuperators [26]. The accumulator can be

used to control the amount of the refrigerant in the system, allowing for large

changes in the maximum possible cooling, and the recuperator can be paired with

this component to control the quality of the fluid entering the accumulator. These

added components introduce additional degrees of control to the system and

improve system robustness and efficiency, at the cost of added complexity. Indeed,
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the control system design space should include consideration of additional actuators

in order to reach desired performance objectives. In recent years, the team has

extended their research to evaluate the effectiveness of linear MPC, when knowledge

of upcoming transience in the load is available [27], and they have also studied

multi-layered control loops to drive the system to more efficient setpoints [26].

2.3 AFRL Vapor Cycle System Research Facility

The AFRL Aerospace Systems Directorate at Wright Patterson Air Force Base

has conducted a significant amount of research in aircraft thermal control systems in

recent years. The Vapor Cycle System Research (VCSRF) facility was built by

AFRL in order to run experimental tests, evaluating different control methods for

VCS. Michalak et al. evaluated a cycle-based control strategy against the

performance of a traditional superheat and capacity control strategy on the VCSRF

system, and showed that significant performance improvements were achievable by

using the cycle-based control approach [2]. However, this approach still consists of

using a few SISO PI loops, as opposed to a MIMO approach. Work by AFRL has

also investigated tip-to-tail aircraft thermal modeling in Simulink, beginning with

the Integrated Vehicle and Energy Technology (INVENT) Program in 2008 [28].

This program studied aircraft thermal system performance in conjunction with

other aircraft subsystems, and many of the simulation tools formed the early work

that later led to the development of what is now the ATTMO simulation

environment [29].

The ATTMO toolbox was developed for AFRL, and has been used in a number

of simulation studies on VCS control. This toolbox provides a convenient method

for modeling vapor cycles, allowing for rapid development of complex models, and

modification in the Simulink environment. Additionally, the accuracy of the toolbox
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uses a high fidelity control-volume modeling approach in the heat exchangers. With

this toolbox, Ngo et. al. established a pathway for designing model-based

controllers [10], where they designed a relatively simple LQR controller for a model

of the Dual-Evaporator VCSRF facility. Later, three more papers came out that

utilized the same pathway for designing various MPC controllers for different VCS

architectures [30], solidifying the advantage of using the toolbox for designing

controllers. A logical next step for the research effort is in the application of these

controllers to actual hardware, to show that even the more advanced techniques,

which rely on accurate models, can still be applied to hardware.

2.4 Contribution to Literature

The contribution of this thesis to the literature is centered around the idea of

using linear MIMO controllers to improve disturbance rejection in vapor cycles.

Experimental work at AFRL has studied the problem of evaporator heat

disturbance rejection with PI control loops [2], but the body of academic research

discussed in this chapter suggests that performance improvements are achievable

with a MIMO control method, like LQR. The LQR method is ”linear” in that it is

designed to control a linear system, and it is ”multi-input multi-output” in that the

controller uses multiple actuators to control multiple outputs. This thesis uses the

same Simulink pathway suggested by Ngo et. al. [10] to design a controller for a

model of a Dual-Evaporator VCS. To the author’s knowledge, only four academic

papers have utilized this approach, as mentioned above. The ATTMO toolbox has

significant value in evaluating different control architectures in simulation before

implementation on hardware, and this thesis aims to further explore the benefits of

using ATTMO to design controllers for aircraft thermal systems.
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III. Methodology

3.1 Chapter Overview

This chapter covers our methodology, which we break into two parts. Section

3.2 covers our approach to modeling vapor cycles. This includes a brief overview of

the two vapor cycle architectures, but the majority of this section is devoted to the

algorithm for extracting a small linear model from the large nonlinear simulation.

Section 3.3 covers controller design. This focuses mainly on the LQR design

steps, along with the extra steps required to augment the controller with integral

control (which is not always covered in a discussion of LQR). There are also

subsections on PI control and controller specifications at the end of this section.

3.2 Modeling

3.2.1 Nonlinear Models

In this thesis, two different architectures (i.e. ”plants”) are considered. The first

is dubbed the ”Simple VCS”, which consists of the four basic components required

to operate the cycle. This plant was studied first because it is the simplest vapor

cycle possible.

The second plant is the Dual-Evaporator Vapor Cycle, and it was used to study

the performance of the LQR method on a larger plant, more representative of what

might be encountered in a real application. Figure 3 shows a comparison of the two

architectures. For the sake of simplicity, the remainder of Section 3.2 focuses on the

Simple VCS, but the process for working with the two plants is essentially the same.

14



www.manaraa.com

(a) Simple Vapor Cycle

(b) Dual-Evaporator Vapor Cycle

Figure 3. Vapor Cycle Architectures

As discussed in Chapter 1, the Simple VCS is comprised of four components:

evaporator, compressor, condenser and valve. The role that each component plays

in the cycle is shown in the pressure-enthalpy diagram in Fig. 4. The ATTMO

toolbox in Simulink is used to model the system. Static components are used to

model the valve and compressor, whereas the heat exchangers are modeled

dynamically, via a finite-volume method. The Simple VCS model is shown in Fig. 5

in the ATTMO user interface. A glycol-water mixture is used to cool the condenser,

and Polyalphaolefin (PAO) is used on the load side of the evaporator.
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A key distinction of this approach is the use of finite-volume heat exchanger

models. Typical control-oriented vapor cycle modeling is done with

moving-boundary heat exchanger models, which simplify the governing partial

differential equations by reducing the flow into discrete zones occupied by each fluid

state (i.e. gas, two-phase, and liquid). This results in a system of ordinary

differential equations of relatively low-order (often < 10 states for each heat

exchanger), which sacrifices accuracy in exchange for tractability. Finite-volume

methods instead discretize the heat exchanger into many pieces, and conservation

equations are then applied to each piece. This results in higher fidelity models

which are slower and more complex, in exchange for improved descriptions of

transient behavior. See Rasmussen [17] for a detailed discussion of the different

approaches to heat exchanger modeling.

Figure 4. Pressure Enthalpy Diagram

16



www.manaraa.com

Figure 5. ATTMO VCS Model

3.2.2 Linearizing Models

In state space form, the model has a state vector x̃ which evolves according to

some set of nonlinear dynamics fx(x̃). The dynamics is also a function of ũ, which

represents the system inputs (both controls and disturbances). Note that these

terms are all vector-valued.

˙̃x = fx(x̃) + fu(ũ) (3.1)

Additionally, we use ỹ to denote the system outputs which we are interested in

controlling (e.g. the evaporator load temperature). These outputs have some

nonlinear relationship to the states hx(x̃) and inputs hu(ũ). Note that this is an

algebraic equation, instead of a differential equation.
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ỹ = hx(x̃) + hu(ũ) (3.2)

The field of control theory is essentially focused on the task of finding some

control law for ũ, such that the state dynamics are stable (and perhaps meeting

some level of desired performance). However, tools from control theory are limited

when it comes to large nonlinear systems like ours. Additionally, the functions f

and h are almost never explicitly known, since they are the result of a collection of

nonlinear blocks spread out through a large Simulink diagram. So instead of

attacking the nonlinear problem directly, we instead linearize it and deploy tools

developed for linear systems. The resulting controller will work as long as the

nonlinear system is kept ”near” the operating point about which it was linearized.

To begin the linearization process, we choose some operating point to be a

particular x̃∗ and ũ∗ such that the system is stable (i.e. ˙̃x = fx(x̃∗) + fu(ũ∗) = 0).

Taking a Taylor Series Expansion of Eq. 3.1 and 3.2 about this operating point, and

keeping only the linear terms, we get a linear system of the following form:

˙̃x ≈ 0 +
∂fx
∂x̃

(x̃− x̃∗) +
∂fu
∂ũ

(ũ− ũ∗) (3.3)

ỹ ≈ y∗ +
∂hx
∂x̃

(x̃− x̃∗) +
∂hu
∂ũ

(ũ− ũ∗) (3.4)

To simplify the above equation, we make the following definitions:

x := x̃− x̃∗ (3.5)

u := ũ− ũ∗ (3.6)

y := ỹ − ỹ∗ (3.7)

18



www.manaraa.com

A :=
∂fx
∂x̃

(3.8)

B :=
∂fu
∂ũ

(3.9)

C :=
∂hx
∂x̃

(3.10)

D :=
∂hu
∂ũ

(3.11)

This leads to the following compact representation of the linear system:

ẋ = Ax+Bu (3.12)

y = Cx+Du (3.13)

Note that the full nonlinear state x̃ has been broken into two parts, where the

state ”bias” x̃∗ is added to an incremental state x, with similar distinctions made

for u and y. The linear system then describes the dynamics of these incremental

states x in response to incremental changes u, and the effect on the incremental

output y. To summarize, the system of equations in Eq. 3.12 and 3.13 are what we

are talking about when we discuss the ”linear” model, and the full ATTMO

simulation is what we mean when we refer to the ”nonlinear” model. The difference

between the two models appears when x and u become ”large” such that the higher

order terms in the Taylor Series Expansion become non-negligible.

Relating all of this back to our Simple VCS, the elements of ũ and ỹ are

comprised of:
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ũ =



Compressor speed

V alve opening

Glycolwater flowrate

Evaporator heat load


(3.14)

ỹ =


Condenser Pressure

Evaporator Pressure

EvaporatorLoad Temperature

 (3.15)

Note that the pressures in Eq. 3.15 are often referred to as the Saturated

Discharge Temperature (SDT) and Saturated Suction Temperature (SST),

respectively, since temperature and pressure are constant during the phase change

process. The names are in reference to the compressor, which sucks from the

evaporator and discharges into the condenser. Rather than measuring these

temperatures directly in a real system, the intent is that these signals would be

found by measuring pressures at the heat exchanger outlets, and converting them to

the associated saturation temperature, based on the isobaric heat exchanger

assumption. In other words, the SST is found by converting the pressure at the

evaporator outlet to an associated saturated gas temperature via a table-lookup, and

the SDT is found similarly from the condenser outlet temperature. Lastly, it’s worth

noting that the evaporator load temperature in Eq. 3.15 is often called the PAO

temperature, in reference to the name of the fluid delivering heat to the evaporator.

In practice, it is possible to find the matrices {A,B,C,D} in Eq. 3.12 and 3.13

by hand, but the linearize() function in MATLAB instead uses a numerical

perturbation algorithm to estimate these terms much more quickly. The estimate is

based on a finite-difference approximation, shown in Eq. 3.16 for B, with similar

approximations made for A, C, and D.
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B :=
∂fu
∂ũ
≈ fu(u∗ + δu)− fu(u∗ − δu)

2δu
(3.16)

Note in Eq. 3.16 that the δu term is vector-valued. In order to ensure that the

perturbations are of the appropriate magnitude, we must include scaling gains on

the perturbed inputs. Without these scaling terms, the algorithm may skew the

dynamics in favor of the small signals. For example, the compressor speed will

experience changes in the 1000’s of rpm’s, whereas the glycol-water mass flow rate

will rarely deviate by more than 0.5. Without scaling gains, a perturbation of

δu = ±[0.1, 0.1, 0.1, 0.1] would result in a linear model with very ”flat” responses to

the compressor, and very ”steep” responses to the glycol-water mass flow rate.

Therefore, the scaling gains ensure that all of the inputs and outputs be of order 1.

With the inputs u and outputs y identified for the ATTMO model and the

appropriate scaling gains chosen, the linearize() function in MATLAB can be used

to obtain a linear system of the form shown in Eq. 3.3 and 3.4. The next task is

then to verify that the linear model is actually a good representation of the local

nonlinear dynamics about the operating point. To answer this question, we send

varying amounts of u into both systems, and compare the outputs in y. Figure 6

shows the results of performing this study.

In Fig. 6, the nonlinear system starts at its operating point, and the linear

system starts at x = 0. Note that both of these correspond to the same starting

point, and the linear outputs are scaled and added to the output bias y∗ to allow for

comparison. From here, a series of pulses across all four elements in u is sent into

the system. We’d like to see that each system responds exactly the same to the

inputs, indicating that the linear model is a very good approximation of the

nonlinear model. That is not what is shown in the figure, but the two systems

respond similarly enough to expect reasonable performance from a controller
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Figure 6. Open-Loop Comparison: Linear vs. Nonlinear

designed with the linear model in mind. It is important to note however, that the

height of the pulses used in this test is important. The height of the pulses varies

for each element in u, and as these heights get larger and larger, the difference

between linear and nonlinear responses in Fig. 6 will necessarily grow. This is due

to the inherent nonlinearities in the system, and we should expect some level of

performance degradation whenever we experience these large deviations from the

operating point. The beginnings of these issues are shown in the bottom plot of Fig.

6, where the linear model isn’t as sensitive as the nonlinear model.

At this point, we have a good linear approximation of the full nonlinear system,

but the linear system has around one hundred states. The majority of these states

are not relevant to the control system designer, who may only be interested in the

states associated with the inputs and outputs. Here, we use model reduction to

22



www.manaraa.com

extract those parts of the model which are most important to us. Roughly speaking,

the importance of each state can be measured along two dimensions: controllability

and observability. Those states which are strongly affected by varying u are more

controllable than others. Similarly if varying some states causes strong variations in

the output y, then those states are said to be observable. These concepts can be

rigorously captured in the observability and controllability Gramians Wo and Wc,

which result from performing singular value decomposition on the controllability

and observability matrices, defined in any linear systems theory textbook.

A naive first approach to model reduction might focus on calculating the

controllability Gramian Wc, and then removing those dimensions of the state space

which have a eigenvalues below a certain threshold. This approach would toss out

parts of the model which are not very controllable, but it runs the risk of throwing

out dimensions of the state space which are strongly observable, and are important

to keep. The process for finding a balanced realization solves this problem by

finding a state space realization which aligns the two concepts of controllability and

observability. A similarity transform matrix T can be found which transforms the

state space system to an alternate realization:

x̄ = Tx (3.17)

˙̄x = TAT−1x̄+ TBu (3.18)

y = CT−1x̄+Du (3.19)

This new system in x̄ has the same input-output relationship between u and y

as the original system, but the states x̄ are ”balanced” in that their controllability
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and observability properties are the same. In other words, T has the property that:

W̄c = TWcT
T = W̄o = T−TWcT

−1 = diag(g) (3.20)

The diagonal entries in the Gramian matrix (sometimes called ”Hankel singular

values”) can then be ranked and plotted, showing the decay in importance for each

state in the system. Figure 7 shows this decay on a logarithmic scale.

Figure 7. Hankel Singular Values

The balreal() command in MATLAB is used to find the similarity transform

matrix T , but the control system designer is responsible for intelligently choosing

the cutoff value for how many states to keep. Typically, one chooses to keep

somewhere between 10 to 20 states, and compares the two system’s Bode plots to

verify that the dynamics are similar.

Lastly, there are two common methods for actually removing the states below

the chosen threshold. Denote x̄1 as the subset of states which are to be kept, and x̄2

as the remaining states to be removed. The dynamics can then be written:
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 ˙̄x1

˙̄x2

 =

 Ā11 Ā12

Ā21 Ā22


 x̄1

x̄2

 +

 B̄1

B̄2

u (3.21)

The truncation method simply removes ˙̄x2 entirely from the equation, whereas

the residualization method sets ˙̄x2 = 0, and solving for the resulting system of

equations. The residualization method is what we use in our study, because it has

the benefit of matching the steady-state values of the full system. However, this

method has the drawback that the model will have a nonzero feed-forward matrix

D, which we’ll see causes problems with estimation later on. The interested reader

is recommended to consult textbooks on the theory behind model reduction for a

more rigorous treatment of the subject.

Chapter 3.3 deals with control design, and often refers to a linear system

{A,B,C,D}. It is important to keep in mind that this linear system is actually the

reduced order linear system that we’ve just finished extracting, and not the

complete linear system.

3.3 Control Design

3.3.1 Control Design Overview

Chapter 3.3 covers the process for designing controllers, and it is broken up into

three parts. Section 3.3.2 makes up the majority of the discussion, and covers all of

the theory behind the LQR controllers used in this thesis. Section 3.3.3 covers the

PI control architecture. Finally, Section 3.3.4 discusses the controller specifications,

which are used to evaluate the performance of the two types of controllers.
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3.3.2 LQR Control Design

3.3.2.1 LQR Overview

The LQR controller is a linear optimal controller, which is designed to be

optimal with respect to a particular linear system and cost functional. While we

have been calling this controller a regulator, it’s really the combination of a

regulator and a state estimator. Often, this combination is called a Linear

Quadratic Gaussian [31], but we have refrained from using that term because it is

often associated with systems with white noise disturbances. The regulator is

simply a feedback matrix Kx, mapping between the current state estimate, to an

associated control action. However, the state vector is an abstract mathematical

object which cannot be measured directly, and so it is instead estimated from the

sensor measurements with a Kalman filter.

Figure 8. LQR Control Architecture

For context, the complete LQR control architecture is shown in Fig. 8. The

”plant” is the system which requires controlling (i.e. the VCS). In practice, this

block contains the full nonlinear system, but throughout this control design process,

we treat the plant block as if it only contained the linearized system extracted

throughout the course of Chapter 3.2. In Chapter 3.2, we lumped both the control
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and the disturbance inputs in the vector u to keep things simple, but we now

separate the terms input a control vector u(t), and a vector of disturbances w0.

There are two fictional white noise disturbances w(t) and v(t) that are shown in the

diagram, but these terms are not representative of anything physical. They are

simply used to tune the Kalman filter, and they will be discussed more later in this

section. The plant outputs y(t), which represents the controlled outputs (e.g. SDT).

The measurement vector m(t) also comes from the plant, and represents the same

signals in y(t), with additive white noise from v(t). In our simulations m(t) = y(t),

but in real systems, there is often differences between the two signals, due to noise

or time delays. Continuing along the feedback path, the Kalman filter provides an

estimate of the disturbance bias ŵ0(t), which goes unused, and an estimate of the

linear state vector x̂(t). This state estimate is fed through the LQR gain matrix,

which provides the control action u(t).

The remainder of this section will walk through the design process for the LQR

controller. Section 3.3.2.2 discusses the theory behind the regulator design, and

Section 3.3.2.3 discusses the similar theory behind the estimator design. These two

topics are covered in most introductions to the theory behind LQR, but Section

3.3.2.4 provides a discussion of the extra steps required to introduce integral control

and disturbance bias estimation, which are not always shared in introductory

treatments of the subject. It is important to revisit Fig. 8 throughout this section,

to anchor each concept in the overall controller architecture.

3.3.2.2 Regulator Design

The field of optimal control focuses on finding control laws that minimize some

cost functional for a given set of dynamics. With LQR, the cost functional takes the
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form shown in Eq. 3.22, where the plant has the linear dynamics shown in Eq. 3.12

and Eq. 3.13.

J =
1

2

∫ ∞
0

xT (t)Qx(t) + uT (t)Ru(t)dt (3.22)

The cost functional J shown in Eq. 3.22 is quadratic in x and u, with a positive

definite matrix R and positive semi-definite matrix Q. J is therefore strictly

positive, and it can be shown that the feedback gain matrix Kx in Eq. 3.23 can be

found to minimize J , for a linear system linear system with dynamics A and Bu.

u(t) = −Kxx(t) (3.23)

Here, notice that we break B into two parts, Bw and Bu, to capture the fact

that the plant in Fig. 8 has the two inputs w0 and u(t). The regulator design

process ignores the disturbance action from Bw, which is instead considered in the

estimator design process.

For a given set of weights {Q,R} and dynamics {A,Bu}, the LQR design

process yields a unique feedback gain matrix Kx which minimizes the value of J for

any bounded input. Generally, software is used to solve the algebraic Riccati

equation required to find Kx, as with the lqr() command in MATLAB. Tuning of

the controller takes place in the diagonal matrices Q and R. When the elements of

Q are large relative to the elements of R, the cost function J is weighted more

heavily towards the states, and so the feedback gain matrix Kx will use large

amounts of control to drive the states down to zero. Conversely, when R is large

relative to Q, the controller will be much more passive with its use of control.

Again, it’s worth pointing out that this approach is only optimal with respect to the
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linear system, but closed-loop performance should be adequate, so long as the

nonlinear system is kept near the linearized operating point.

At this point, we have the feedback gain matrix Kx, which corresponds to the

LQR block in Fig. 8. Next, we describe the method for obtaining an estimate of the

state vector x̂(t).

3.3.2.3 Estimator Design

The state vector feedback x(t) shown in Eq. 3.23 represents an abstract

mathematical term, which does not correspond directly to anything physical. An

estimator can be designed to provide estimates of these states (denoted with a hat

x̂(t)), based on available measurements m(t). There are numerous ways to provide

estimates of the state vector, one of which is called a Linear Quadratic

Estimator (LQE), also known as a Kalman filter. The design process begins with a

linear model of the dynamics, with additive white noise on the inputs and outputs.

ẋ(t) = Ax(t) +Buu(t) +Bw(w(t) + w0) (3.24)

m(t) = Cx(t) + v(t) (3.25)

The two above equations represent the estimator’s model of the plant dynamics

in Fig. 8. Here, w(t) and v(t) are white noise disturbances on the plant and sensors,

respectively. Additionally, we ignore the w0 term for now. The white noise signals

have spectral densities:

E[w(t)wT (t+ τ)] = Swδ(τ) (3.26)

E[v(t)vT (t+ τ)] = Svδ(τ) (3.27)
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The design element of this estimator takes place in the spectral density matrices

Sw and Sv, which play a similar role to the Q and R matrices from the regulator

design process. Using the lqr() command to design the estimator is possible, since

the LQE and LQR approaches have some duality associated with them, and the

result is an optimal Kalman gain L [31]. That is to say that for a given set of

weights {BwSwB
T
w ,Sv} and dynamics {AT ,CT}, the LQE design process yields a

unique Kalman gain matrix L which minimizes the mean square estimation error.

Traditionally, the spectral density matrices are measures of real sources of noise,

which drive the design of the estimator. However, in our simulation case study,

these matrices are used only as tuning parameters for finding the Kalman gain

matrix. Once a set of values are chosen for the spectral density matrices, the

algebraic Riccati equation is solved, L is found, and the estimator’s dynamics are

propagated to provide a state estimate x̂(t).

˙̂x(t) = Ax̂(t) +Buu(t) + L(m(t)− Cmx̂(t)) (3.28)

At this point, we have a working regulator and estimator, completing the

feedback loop in Fig. 8. However, we have entirely neglected the effect of the

disturbance bias w0. The next section will provide a method for dealing with this

term.

3.3.2.4 Augmented LQR

Referring back to the block diagram in Fig. 8, we see that we have completed

the design of the Kalman filter and LQR blocks. However, we have ignored the

disturbance bias w0, which can result in degraded performance. This is due to the

fact that the estimator has no knowledge of the disturbance bias, and the result will

be a steady-state error in the state estimate. For the simulation case studies in
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Chapter IV, there is a large pulse in the heat load, which can be modelled as a bias

in the disturbance. In many practical applications, these disturbances cannot be

measured accurately in real time, and so some form of estimation is required. One

way to address this problem is via a combination of integral control and disturbance

estimation [31]. In this section, we’ll discuss how the estimator is augmented to

provide estimates of w0 and how the regulator is augmented to provide integral

control action.

First, we will discuss the process for introducing an estimate of the disturbance

bias. Ignoring the fictional noise term w(t) in Eq. 3.24, the linear dynamics can be

written as:

ẋ(t) = Ax(t) +Buu(t) +Bww0 (3.29)

We seek to design an estimator that not only provides state estimates, but also

estimates the disturbance bias w0. To do this, we rearrange the dynamics in the

previous equation such that a new state ŵ0(t) is appended to the state vector

estimate. After doing this, the augmented estimator dynamics are written as:

 ˙̂x(t)

˙̂w0(t)

 =

 A Bw

0 0


 x̂(t)

ŵ0(t)

 +

 Bu

0

u(t) +

 0

1

 w̃(t) (3.30)

Note that in the above equation, the zeros are padding matrices of the

appropriate dimension (i.e. each zero represents a matrix of zeros such that

matrix-vector multiplication makes sense). Upon inspecting the above equation, we

see that dynamics of the state estimate now account for the effect of the bias, and

that the estimate of the bias is driven by a fictional noise term w̃(t). This noise

term is not representative of anything physical, and it is only used as a design

31



www.manaraa.com

parameter to tune how the bias estimate converges (otherwise ŵ0(t) would have no

dynamics). The bias estimate is not fed to the regulator, but it is important to

capture the Bww0 term in order to provide accurate state estimates. Lastly, we

point out that the bias is written as a constant w0 to be estimated, even though the

evaporator heat loads in Chapter IV are time-varying. So long as the loads allow

enough time for the estimator to converge on a useful estimate, the method should

work as if the w0 were constant.

The second modification to the controller is the introduction of integral control

in the regulator, which helps to mitigate any steady state errors caused by the

disturbance bias. First, a reference signal r(t) is introduced, representing the desired

plant output. The error e(t) and the integral error eI(t) are then defined as:

eI(t) :=

∫ ∞
0

e(t)dt =

∫ ∞
0

r(t)− y(t)dt (3.31)

Figure 9. LQR Integral Control Augmentation

A block diagram of this modification is shown in Fig. 9, showing that we’ve

added an integrator block 1
s

that acts on the newly defined error term. For our

purposes, r(t) is simply zero, but this approach can be modified to track different

output setpoints by choosing nonzero values for r(t). With that said, it is worth

mentioning that such setpoint changes were investigated in this research, and there

were issues with keeping these setpoint changes from interfering with the bias

estimation. In any case, by setting r(t) = 0, the error dynamics are:
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ėI(t) = −Cx(t) (3.32)

This integral error term is then appended to the state vector, and the

augmented plant is written as:

 ẋ(t)

ėI(t)

 =

 A 0

−Cy 0


 x(t)

eI(t)

 +

 Bu

0

u(t) = AIxI(t) +BIu(t) (3.33)

The process for designing the LQR controller then follows the same path as

before, with the augmented plant shown in Eq. 3.33. When building the cost

functional J , the weighting matrix Q is enlarged to accommodate the augmented

state vector, and all of the elements in Q are set to zero, except for those weighting

the integral error states. R is kept the same, and the A and Bu matrices used in the

lqr() command are instead the augmented {AI , BI} matrices. The resulting

feedback gain matrix K can be broken down to illustrate the fact that we now have

integral control action.

u(t) = −KxI(t) = −Kxx(t)−KI

∫ ∞
0

r − y(t)dt (3.34)

This concludes the discussion of the theory behind the model-based controller’s

design. To summarize, the LQR controller is broken into two parts: the regulator

and the estimator. The regulator is essentially a non-square matrix K mapping a

state estimate to the appropriate control action u. The plant is augmented with an

integral error term, in order to introduce integral control action to the regulator.

The estimator uses a linear model of the state dynamics to provide a dynamic

estimate of the state vector x̂(t), based on sensor feedback measurements m(t).

When designing the estimator, we use a linear model of the disturbance bias’s effect
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on the system (Bw), in order to append an estimate of the disturbance bias to the

state estimate. This mitigates the steady-state estimation error caused by the

disturbance bias.

When actually designing the controller, one typically starts by finding good

values for the tuning matrices {Q,R} to design the regulator with full-state

feedback, on the reduced-order linear system. Once these values are found, the

estimator can be inserted before the regulator, driven by feedback measurements

m(t). In this way, effective values for {Sw, Sv} can be found. Once all of these

tuning parameters are found to be satisfactory, the reduced-order linear system can

be replaced in simulation with the full nonlinear system (with appropriate scaling

and biasing of u(t) and y(t) about the operating point), and a final round of tuning

occurs. So long as the linear model is a good approximation of the nonlinear

system, this final round of tuning shouldn’t require much effort.

3.3.3 PI Control Design

To provide context for the LQR controller’s performance, a set of PI controllers

were designed [2] to provide a performance baseline. These PI controllers were

implemented in separate SISO loops, shown in Fig. 10, with the controller gains

being chosen based on heuristics and manual tuning. In the Simple VCS, the

pairings are as follows: the compressor controls the evaporator pressure, the

glycol-water flow rate controls the condenser pressure, and the valve controls the

PAO temperature. Each of these pairings correspond one of the PI blocks in Fig. 10.

Each PI block has a single element of the output vector y(t) being fed into it,

and a single element of the control vector u(t) being output by it. The key

difference between the PI architecture in Fig. 10 and the LQR architecture in Fig. 8

is the fact that the PI blocks are decoupled, whereas the LQR feedback is coupled.
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Figure 10. PI Controller Architecture

3.3.4 Controller Specifications

Table 2 provides a set of specifications for the controllers in the Simple VCS

case study. This table consists of target envelopes, within which the particular

output signals must be maintained. Brief departures from these envelopes is

tolerable, but undesirable. Hard constraints are specified for some of the signals,

with these constraints being associated with hardware failure modes for the system.

None of these constraints are explicitly included in the controller design, but these

specifications provide a way to compare performance between two controllers, and

to decide whether or not a particular simulation run was successful. The process of

controller tuning is the process of finding controller gains such that these

performance specifications are met. The values below are for the Simple VCS

system, but similar constraints are used for the Dual-Evaporator VCS used in the

second set of simulation case studies.
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Term Target Envelope Hard Constraint
Low side temperature 26.5 F ± 2 F
High side temperature 97 F ± 3 F [∼,115] F
Evaporator sink temperature 45 F ± 2 F
Condenser Subcooling [10,∼] F
Evaporator superheat [0,∼] F
Compressor speed [4000,18000] rpm
Valve opening [0,100] %
Glycol-water flowrate [0,1] kg/s

Table 2. Simple VCS Controller Specifications
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IV. Results and Analysis

4.1 Overview

This chapter contains the results of the simulation work undertaken in this

thesis. The results are broken up into two parts. First, the simple vapor cycle

system is simulated under a pulse disturbance in the evaporator heat load.

Comparisons are made between the closed-loop performance of the LQR and PI

controllers. In the second section, the same process is performed with the

Dual-Evaporator vapor cycle system, with a more varied disturbance profile across

the two evaporators.

4.2 Simple Vapor Cycle Results

The steady-state evaporator heat load for the Simple VCS was 5 kW, based on

the steady-state heat load for which the heat exchangers were sized in the ATTMO

simulation. For the simulation case studies, pulses above this 5 kW load were

investigated, and it was found that a doubling of the heat load was roughly where

the first signs of performance degradation were observed in one of the control loops.

The results for this case study are broken up into two parts. First, we show the

control action for each controller in Fig. 11, and then we show the output

performance in Fig. 12 and 13.

In the top-left of Fig. 11, we show the heat pulse as a solid-red line, which

pulses from 5 kW up to 10 kW for 50 seconds. Also displayed in the top-left plot is

the LQR controller’s estimate of the heat load (shown as a dashed magenta line),

which corresponds to the ŵ0 term discussed in Chapter 3.3. Close inspection of this

plot shows that the heat estimate takes about 1 second to react to the loading

event, with a 15% overshoot. When the pulse is turned off, the estimate takes 2
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Figure 11. Simple VCS: Disturbance, and Controller Responses

seconds to respond to the event and has a 23% overshoot. This asymmetry in time

delay and overshoot performance is likely due to the fact that the estimator is based

off of the linearized dynamics at the operating point (i.e. at 5 kW), and so the

estimator’s performance is degraded when the system is under 10 kW of load.

The other subplots in this figure show the control actions for the PI and LQR

controller, across the three actuators. PI control trajectories are shown as

dashed-blue, with LQR trajectories shown in solid-red. These plots all show roughly

the same pattern: shortly after the loading event begins at 20 seconds, both the PI

and LQR controllers speed up the compressor, open up the valve, and increase the

glycol-water flow rate. All of these plots peak just after the pulse turns off at 70

seconds, and eventually return to the steady-state values. Note that these steady

state values correspond to the bias term u∗ discussed in Chapter 3.2.
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Comparing the two sets of control trajectories, we see that the LQR controller

is more aggressive with its use of the compressor (in that it reaches a higher peak

value near 70 seconds), whereas the PI controller uses more of the valve. This has

more to do with differences in tuning than it has to do with the controller designs,

as the PI gains can be adjusted to achieve a closer match between these two

trajectories. However, the LQR control trajectories do show an interesting feature

that differentiates them from the PI control trajectories. When the loading event

begins, the LQR controller responds quickly and aggressively, indicated by the steep

slope of the initial responses. This rapid response is required in order to keep the

evaporator sink temperature from rising, as the evaporator heat load has the

strongest affect on this output. Following the rapid spike in control action is a

change in the slope, where the actuators work together to control the other two

outputs. This contrast is most apparent in the bottom-right plot of the glycol-water

flow rate, but the trend is present across all three actuators. Lastly, the same feature

is seen when the pulse ends, with a rapid response followed by a slower response.

The first set of outputs are shown in Fig. 12, again using dashed-blue to

represent the PI trajectories and solid-red for LQR. These are called the

”controlled” outputs, since they represent the terms in y(t), which are used for

controller feedback. The other set of outputs are shown in Fig. 13, which are called

the ”uncontrolled” outputs since they are not actively regulated by the controllers.

Ideally, we’d like to see that all of the output trajectories are flat lines and remain

within the target envelopes (represented as dashed black lines at constant values

corresponding to the values shared in Table 2). However, we see that all of these

signals begin to deviate from their setpoint when the loading event begins at 20

seconds. In the top plot, we see that the PI controller performs perfectly in

regulating the condenser pressure (i.e. the SDT, shown as the top horizontal line in
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Figure 12. Simple VCS: Controlled Outputs

the vapor cycle pressure-enthalpy diagram in Fig. 2). However, both controllers

keep the signal well within the desired constraints. The second plot shows the

evaporator pressure (i.e. the SST, shown as the bottom horizontal line in Fig. 2),
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and we see that the PI controller is unable to keep the signal within the constraints.

This does not correspond to a system failure, but it does show that the LQR

controller outperforms the PI controller in regulating the SST. In the bottom plot

of Fig. 12, we see that the LQR controller also outperforms the PI controller in

regulating the evaporator sink temperature (i.e. the PAO temperature, on the sink

side of the evaporator). All of these factors indicate that LQR is outperforming PI

in this case study, but we have to verify that all of the constraints in Table 2 are

respected, which includes the two signals shown in Fig. 13.

Fig. 13 shows the uncontrolled signals of the evaporator superheat and the

condenser subcooling. These two signals are not used for feedback, but it is

important that they are kept above the hard constraints, shown in the plots as solid

black lines. The bottom plot shows that both controllers fall below the target

envelope for a period of time, but the PI loop additionally breaks the hard

constraint, and loses superheat during a portion of the loading event. This can

cause compressor failure, if liquid starts entering the device, and represents a critical

failure in the PI controller’s performance. It may be possible to tune the PI gains to

improve that controllers performance, but the process of tuning the gains is

typically based on heuristics and it can be very challenging to search for the correct

set of gains, since the control architecture does not account for any cross-couplings

across the different actuators.

From this case study, it is clear that the LQR controller outperforms the PI

controller in regulating the SST, the evaporator sink temperature, and the

evaporator superheat. However, as a final point of discussion for this section, it is

worth pointing out one of the limitations of the LQR method. In Fig. 12, the

evaporator sink temperature with LQR control shows a slow increase in the

temperature, starting just before 50 seconds and ending once the pulse was shut off
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Figure 13. Simple VCS: Uncontrolled Outputs

at 70 seconds. The cause of this increase is due to a feed-forward term in the linear

model of the dynamics, which was introduced when performing the residualization

step discussed at the end of Chapter 3.2. This feed-forward term should ideally be

accounted for in the estimator, but accounting for feed-forward dynamics in a

controller is notoriously susceptible to instability caused by modelling errors [31].

Since the system is really nonlinear, modeling errors are absolutely present, and the

expected instabilities were encountered in simulation case studies which tried to
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account for the feed-forward term. For this reason, this LQR controller cannot reject

heat pulses that last for a very long period of time in this system, typically above

200 seconds, whereas the PI controller was able to handle these loading events.

4.3 Dual-Evaporator Vapor Cycle Results

The LQR controller performs well on the simple vapor cycle system, with its

primary drawback being its inability to handle long duration loading events, due to

the feed-forward terms introduced in the residualization step performed during

model reduction. The relationship between how long and how large of a loading

event a controller can handle is unclear, and perhaps this limit is best found via

simulation case studies, but it is clear that the LQR controller outperforms the PI

controller over some envelope near the operating point. However, it is of great

importance that the system work over a wide range of operating conditions,

including variations in other terms such as the glycol-water temperature. As more

complexity is added to the controller design, to capture more of the system

dynamics, the controller inherently becomes more vulnerable to modeling errors.

For this reason, the process of controller design was repeated for a larger system.

The results of this study are shared in this section, and are meant to give an

indication of how the LQR approach scales with the number of components in the

vapor cycle, when working in the ATTMO simulation environment.

The larger vapor cycle is based on AFRL’s VCSRF system, with two

evaporators experiencing differing loads and a liquid injection valve feeding some of

the subcooled liquid from the condenser outlet to the compressor inlet. This valve

introduces an additional degree of freedom to the system, allowing for reduction in

the system’s superheat, to keep the compressor from operating over regions where it

is inefficient.
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The heat load profile for the Dual-Evaporator system is much longer and more

varied than the load used in the previous section. Figure 14 shows the load for both

evaporators, with the profile being taken from previous work by AFRL on studying

VCS control strategies. The load is centered on 9 kW, and the system begins at the

operating point x∗, with control u∗. At 900 seconds, the first pulse begins, with one

load increasing by 1.8 kW and the other decreasing by the same amount. This

asymmetry in loading requires the two evaporator valves to take different actions,

and is meant to evaluate each controller’s ability to handle uneven loads in a

multi-evaporator system. Each step in the profile lasts 900 seconds, which gave

sufficient time for the system to reach steady-state after each transition. At 1800

seconds, the loads reach their extreme at 12 kW and 6 kW, before beginning their

return to 9 kW. The same pattern is then repeated at 3600 seconds, with the load

profiles being flipped. The response to a ± 3 kW deviation was evaluated from

8,100-10,8000 seconds. The final stage of the profile has both evaporator loads being

turned up to the maximum of 12 kW, to evaluate whether or not this maximum

disturbance introduces any steady-state errors in the closed-loop systems.

The Dual-Evaporator VCS is then simulated under this loading event in

closed-loop with each of the controllers, and output performance is compared in the

following figures. The first set of controlled outputs is shown in Fig. 15, containing

plots of the SST and SDT.

From the two plots in Fig. 15, we see that both controllers keep the signals well

within the target envelopes. The PI controller’s SST trajectory has two notable

spikes at 11,700 and 12,600 seconds, corresponding to the times when the

evaporator loads are pushed up to 12 kW, but the amplitude of these spikes is not

large enough to cause any problems. Examining the LQR trajectories, we see the

controller never allows for any large spikes, but there is a significant amount of drift

44



www.manaraa.com

Figure 14. Dual-Evaporator: Evaporator Heat Load Profile

and steady state error present in the trajectory. This is most apparent in the SST

trajectory, where the controller has a steady state error of almost 0.5oF when both

heat loads are at 12 kW. This is chiefly due to model differences between the linear

and nonlinear system, and represents a limitation of the LQR approach. So long as

there are nonzero disturbances acting on the system, there will be some nonzero

steady state error in the outputs. For this particular system, these steady state
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Figure 15. Dual-Evaporator: Evaporator and Condenser Temperatures

errors are within the target envelope, but larger disturbances may drive the LQR

controller outside of the envelope in cases where the PI system would not fail.

Figure 16 shows two more controlled outputs used for feedback. These are the

temperatures of the PAO loops where the heat actually enters the system, driving

each evaporator. At the first heat pulse at 900 seconds, the dashed-blue line

experiences a larger deviation from the setpoint, compared to the solid-red line.

However, the PI controller quickly brings this signal back to the desired setpoint,
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Figure 16. Dual-Evaporator: Evaporator Load Temperatures

where as the LQR controller is unable to drive the steady state error in the red line

to zero. Every loading event throughout the profile has this feature, where the LQR

controller has non-zero steady state error, but the PI controller allows a sharper

initial deviation from the setpoint. At the end of the profile, the LQR controller has

about 0.4oF and 0.25oF of steady-state error in the two signals. The steady-state

error is likely caused by modeling errors, but there are two likely candidates for the

source of the modeling error. The first is a modeling error caused by differences
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between the nonlinear system and the linearization at the operating point.

Unfortunately, this source of error is difficult to mitigate in the framework of linear

control theory. However, it is also possible that the steady-state error is caused by

the feed-forward terms introduced in the residualization step of model reduction.

The source of the steady-state error was not identified in our research, but if it is due

to the residualization step, there may be improvements possible by utilizing different

techniques from model reduction or estimation, to address the feed-forward term.

Another noteworthy feature of these plots are the peaks in the solid-red curves,

occurring around 5,400 and 9,900 seconds. Note that aside from these two peaks,

the solid-red curves stay quite close to the operating point. The source behind this

issue is uncertain, especially because there isn’t anything particularly special about

the disturbance driving the system when these peaks occur. If anything, we might

expect these peaks to occur at the end of the simulation, when the heat loads are

highest, as opposed to the middle of the simulation. However, if we examine the

spikes closely, we see some high frequency oscillations occurring just after the spike.

Examining the LQR controller’s estimate of the heat load in Fig. 17, we see a

similar high-frequency feature occurring at 5,400 and 9,900 seconds.

The solid lines in Fig. 17 show the actual heat load, with the dashed lines

showing the Kalman filter’s estimate of the heat load, based on the feedback

measurements. We see that the early estimates are quite accurate, along with the

estimates during the final loading event. However, there are two periods of very

poor estimates, roughly matching the spikes in Fig. 16 at 5,400 and 9,900 seconds.

It is reassuring that the LQR controller is still able to maintain the signal within

the target envelope during these periods of poor heat estimation, but this

correlation does suggest that the current limiting factor in our architecture is the
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Figure 17. LQR Disturbance Estimates

estimator. Again, this issue is likely attributable to modeling errors from either the

nonlinear system, or the feed-forward term.

Figure 18 shows plots for the superheat and subcooling during the case study.

Note that the evaporator superheat is being used for feedback, so it can be thought

of as ”controlled”, whereas the condenser subcooling is left uncontrolled. Both of

these signals have hard constraints associated with them, with the 5oF minimum

superheat and 10oF minimum subcooling shown as solid black lines. From the
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bottom plot, we see that the amount of subcooling present in the system is well

above the constraint, which is why the signal was not included in the feedback path.

Additionally, control of subcooling in a vapor cycle is challenging with the current

architecture, and might require the addition of additional components to the cycle.

Figure 18. Dual-Evaporator: Superheat and Subcooling

On the other hand, the upper plot of superheat shows an important difference

between the PI and LQR systems. In many real-world VCS control architectures,

the evaporator valve directly controls evaporator superheat, due to the strong
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coupling between these two signals. However, our PI system only uses the liquid

injection valve to control superheat, and is severely limited in its control authority.

This results in the relatively poor performance shown in the figure, compared to the

LQR performance. This issue can be addressed in the context of a PI architecture

by simply reassigning the sensor-actuator pairings to match a valve with the

superheat. However, this comes with the trade-off of sacrificing control of one signal

in exchange for another. This is a fundamental drawback of the PI architecture

which directly pairs actuators with outputs, compared to the LQR architecture

which uses all of the actuators in an attempt to control all of the outputs.

Figure 19. Dual-Evaporator: Compressor and Liquid Injection Valve Control
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The last set of plots in this Chapter show the control actions taking place in the

four actuators. Fig. 19 shows the compressor speed and the liquid injection valve.

In the top plot, we see an interesting pattern where the LQR controller often does

the opposite of what the PI controller does. This is due to the fact that the PI

controller is only using the compressor speed to control the SST, whereas the LQR

controller is using the compressor to control all of the feedback signals. Looking at

the bottom plot in Fig. 19, we see that the LQR controller does not saturate the

use of the liquid injection valve, whereas the PI controller turns off the valve three

times, during periods of very high evaporator heat loading.

Figure 20. Dual-Evaporator: Evaporator Valves Control
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Fig. 20 shows the evaporator valve opening for each of the evaporators in the

system. Comparing the curves in these two plots, we see that the use of the valves

controlling flow into each evaporator follow essentially the same paths. The only

notable difference is that the PI controller is tuned to be slightly more aggressive

with the maximum amount of valve opening, as can be seen by portions of the

curves where the dashed-blue line is higher than the solid-red line.

Lastly, we have the glycol-water flow rate shown in Fig. 21. This figure exhibits

similar trends to the compressor action, with the LQR controller doing the opposite

of what the PI controller, again displaying a key difference between the two control

approaches.

Figure 21. Dual-Evaporator: Glycol-Water Control

From these case studies, we’ve seen that the advantages of using LQR over PI

are not so clear cut. The LQR controller manages to respect all of the constraints

set by the controller specifications, whereas the PI controller fails to maintain the

minimum level of superheat. However, the PI controller does perform much better at

rejecting the steady-state errors in most of the outputs. The LQR method struggles
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with steady-state errors, which may be caused by modeling errors introduced by the

nonlinear system, or by the feed-forward term introduced during residualization.

With that said, the issues seen with the LQR system may be overcome by simply

adopting a more appropriate model reduction or estimation scheme.

54



www.manaraa.com

V. Conclusions and Recommendations

5.1 Conclusions

This thesis presented the results of designing a model-based controller for a

vapor compression cycle, in simulation. Linearization of the nonlinear model was

discussed, including details on model reduction and validation of the similarity

between the models. The process for designing LQR and PI controllers was shared,

with a focus on the elements associated with designing the former. These controllers

were first designed for a simple vapor cycle, with the minimum four components,

and performance was evaluated in the presence of a 50 second pulse in the heat

load. In this case study, the LQR controller outperformed the PI controller in

regulating the three feedback signals. Additionally, the PI controller was unable to

maintain superheat, which would have led to hardware failure in a real system.

From these results, it is clear that the LQR method has the potential to outperform

traditional PI methods in rejecting evaporator heat loads.

To study how the LQR approach works for larger system, the same process was

applied to a larger vapor cycle system, with an added evaporator and a liquid

injection valve. The linearization process and the model reduction steps followed

the same path as in the previous study with the simple vapor cycle. However, it was

more challenging to find a minimum number of states when performing model

reduction, due to the fact that the system is larger and more states are required to

capture the salient dynamics. For even larger vapor cycles, this step may be the

limiting factor and it’s likely that other approaches may be required if one aims to

design a MIMO controller.

Comparing the results in the Dual-Evaporator case study, the PI controller

performed well across all of the outputs, except in maintaining minimum levels of
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superheat. The LQR controller performed much better at maintaining superheat,

due to the fact that it was able to use the evaporator valves to do so, and it

maintained all of the other signals within the target envelopes. However, the LQR

controller did exhibit significant amounts of steady state error at the end of the

simulation case study, where both evaporator heat loads were set to their maximum

amounts. This is due to differences between the linear and nonlinear model, and

presents a shortcoming of the LQR approach.

Based on our analysis of these two case studies, we can make the following

conclusions:

• For the Simple VCS, the LQR controller significantly outperforms the PI

controller. Tuning the PI controller to overcome the performance issues may

be possible, but the process for finding suitable PI gains is often arduous and

without guarantees of success. Using model-based control design methods like

LQR is therefore a viable method for improving controller performance in

VCS.

• In the Dual-Evaporator VCS case study, the LQR method fell short of the PI

controller’s performance in all categories except for superheat regulation.

These performance issues are likely rooted in modeling errors, and may be

overcome with better estimation methods for estimating unmeasured

disturbances.

• Our results are contingent upon accurate VCS models. For this controller

design pathway to reach its full potential, there must be significant confidence

in the ATTMO toolbox’s ability to capture all of the cross-couplings between

the different inputs and outputs in the system. Without accurate modeling of

these couplings, MIMO controllers will suffer performance degradation.
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Indeed, the benefits of using most classes of model-based controllers, which

extend far beyond simple LQR approaches, are contingent upon reliable

models.

• One challenge in designing an LQR controller for the Dual-Evaporator VCS

was performing model reduction. There is no reason to expect that this task

will get easier as more components are added to the system. Therefore, we

must develop improved methods for performing the model reduction step,

while balancing the competing traits of model size and accuracy.

5.2 Recommendations for Future Work

In this research the LQR approach showed promise in the simple vapor cycle

case, but adding a second evaporator already has begun to introduce challenges to

the method. In order to realize the full potential of vapor cycles in military aircraft,

the control system must be robust over a wide range of operating conditions, and

the results presented here already show signs of performance degradation off of the

operating point. This final section of the thesis will present some recommendations

for future research, to address what we identify as the key challenges associated

with realizing the full potential of vapor cycle systems for military aircraft.

In order for LQR controllers to see use in real vapor cycle systems, with many

evaporators operating across a wide range of operating conditions, the process for

extracting a tractable linear model must be improved. Sources of nonlinearity in the

system should be removed as much as possible, both at the level of hardware design,

and during the process of setting up the model linearization. Much of this research

was characterized by a mindset of trying to ”linearize everything”, and there are

likely great improvements possible if only a subset of the vapor cycle dynamics were

to be used in the controller design. Indeed, for very large systems, some of the
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literature suggests that centralized MIMO control is less effective than distributed

forms of control, which do not lean so heavily on accurate linear models of large

nonlinear systems.

The task of finding ”good” values for the weighting matrices in the cost

functional is relatively simple, with satisfactory results found after only a few

educated guesses. There is perhaps some room here for performance improvement

by automating the tuning process, in closed loop feedback with the linearized

model. Some work on this has already been done and shown promising results in

the field of model predictive control [10], and it is not unreasonable to expect

similar performance improvements in the LQR approach.

Lastly, and perhaps most importantly, is the question of how to achieve control

over a wide region of the nonlinear system’s operating conditions. Without resorting

to nonlinear control methods or model predictive control, it may be possible to

extend the results of LQR by adopting a gain-scheduling approach, where multiple

linear models are used to capture the variations in the system dynamics. This

approach has been investigated by a number of other researchers, but the method is

almost always characterized by large amounts of effort required to design the many

sets of linear controllers. Additionally, finding efficient scheduling variables to

ensure smooth control hand-offs between the different controllers is still a challenge

associated with gain-scheduling.
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